

Grade Obtained	A	B	C	D	N/A
2020	43.2%	23.1%	21.9%	8.8%	3.0%
2021	45.0%	21.3%	19.5%	8.6%	5.1%

This marking scheme is for the intended National 5 Chemistry Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason.
Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same.
The grades awarded by SQA in 2020 and 2021 are in the table above.

2020 National 5 Chemistry Marking Scheme				
Long Qu	Answer	Reasoning		
$1 a(i)$	isotope	Same	Different	Mass number Number of neutrons
$1 a(i i)$	120	The average atomic mass $($ ram $)=119.4$ This means the most common isotope in the sample must be 120 for the average to be so close.		
$1 b$	${ }_{50}^{124} \mathrm{~S}$	All atoms of tin (Sn) have the same atomic number of 50 . The mass number is the number of protons + number of neutrons $=50=74=124$		
1 c	Covalent	Substances which do not conduct in the solid or liquid state contain covalent bonds. (Due to the low melting and boiling points, the substance must be covalent molecular)		
$2 a$	Diagram showing:			- measuring cylinder water delivery tube beaker
2 b (i)	Curve showing:	curve steeper at star	Curve should plate	volume/heig
$2 b(i i)$	Reactants being used up	As the reaction proceeds, the reactants get used up as they turn into products. With less reactants available, there are less collisions leading to decrease in the reaction rate.		
$2 C(i)$	0.22	$\text { Rate }=\frac{\Delta \text { Quantity }}{\Delta \text { Time }}=\frac{50 \mathrm{~cm}^{3}}{230 \mathrm{~s}}=0.22 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$		
$2 c(i i)$	As temperature increases the time taken decreases	As the temperature increases, the reaction rate increase and the time taken for $50 \mathrm{~cm}^{3}$ of gas to form will decrease. This is due to an increase in collisions between the reactants as the particles have more energy at a higher temperature.		
2c(iii)	Sulfuric acid contains more H^{+}ions	Sulfuric acid has the formula $\mathrm{H}_{2} \mathrm{SO}_{4}$ and has two H^{+}ions in every formula unit of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Hydrochloric acid HCl has one H^{+}ions per formula unit. Sulfuric acid has a higher concentration of H^{+}than hydrochloric acid when they two acids have the same concentration.		
$3 a$	Speed up chemical reactions	Catalysts speed up chemical reactions but can be recovered chemically unchanged at the end of the reaction.		
		The three elements essential for heathy plant growth are:		
3 b (i)	or potassium	Nitrogen	Phosphorus	Potassium
$3 b(i i)$	soluble	All fertilisers must contain at least one element from N, P or K and be soluble in water. If the chemical is not soluble then it will not be able to get in plants through their roots.		
$3 \mathrm{c}(\mathrm{i})$	46.7	$\% \mathrm{Fe}=\frac{28}{60} \times 100=46.7 \%(1 \mathrm{mark})$		
3 C (ii)	Thermometer	Thermometer is the apparatus to measure changes in temperature.		
$4 a$	triethylene glycol	Problem Solving: Selecting information from a passage		

11b(ii)	Answer is four times answer from Q11b(i)	No of half-lives	0	1	2	3	4
		Fraction remaining	1	$1 / 2$	$1 / 4$	$1 / 8$	1/16
		If 1 half-life $=5500$ years then 4 four half-lives $=22000$ years					
11b(iii)	No ${ }^{14} \mathrm{C}$ left in bones	Too many half-lives have passed for an accurate number of half-lives to be calculated and therefore the date of the bone cannot be made.					
$12 a$	Compounds containing carbon and hydrogen only	There are many types of hydrocarbons but they are all compounds					
12 b (i)	Hydrogenation	The addition of hydrogen across a $C=C$ double bond is also called hydrogenation.					
12 b (ii)	Diagram of six carbon alkene	Diagram of one of the following alkenes:					
		hex-1-ene	hex-2-ene			hex-3-ene	
		2-methylpent-1-ene	3-methylpent-1-ene			4-methylpent-1-ene	
		2-methylpent-2-ene	3-methylpent-2-ene			4-methylpent-2-ene	
		2,3-dimethylbut-1-ene	3,3-dimethylbut-1-ene			2,3-dimethylbut-2-ene	
$12 c$	115	$1 \mathrm{~mol}_{5} \mathrm{H}_{10}=(5 \times 12)+(10 \times 1)=60+10=70 \mathrm{~g}$no. of $\mathrm{mol}=\frac{\text { mass }}{\mathrm{gfm}}=\frac{175 \mathrm{~g}}{70 \mathrm{~g} \mathrm{~mol}^{-1}}=2.5 \mathrm{~mol}$$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}_{2}+2 \mathrm{Na} \longrightarrow \mathrm{C}_{5} \mathrm{~mol} \mathrm{H}_{10}+2 \mathrm{NaBr}$2 mol 5 mol $1 \mathrm{~mol} \mathrm{Na}=(1 \times 23)=23 \mathrm{~g}$ mass $=$ no. of mol $\times \mathrm{gfm}=5 \mathrm{~mol} \times 23 \mathrm{~g} \mathrm{~mol}^{-1}=115 \mathrm{~g}$					
12d	4	$\text { Ring strain per carbon }=\frac{\text { total ring strain }}{\text { no. of carbons in cycloalkane }}=\frac{28}{7}=4$					
	Open Question:	3 mark answer	2 mark answer			1 mark answer	
13		Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. these to respond to the problem.	Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.			Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	

